Document Type : Original Articles
Authors
1 PhD Student, Department of Sport Biomechanics, School of Sports Sciences, University of Mazandaran, Babolsar, Iran
2 Associate Professor, Department of Sport Biomechanics, School of Sports Sciences, University of Mazandaran, Babolsar, Iran
3 Professor, Department of Corrective Exercises and Sports Injuries, School of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
Abstract
Introduction: The mechanisms of concussion in sport have not been exclusively known yet. The aim of this study was to investigate linear and rotational acceleration of the head, as factors of affecting on detection of brain damage in taekwondo, and their importance in these injuries.Materials and Methods: In this experimental study, 15 male elite taekwondo athletes participated. To measure linear and rotational acceleration, researcher used a device composed of artificial neck and head, mechanical arm for impact to head, and a researcher-made package of computer and recorder to estimate, monitor, and save the data. The design and simulation of the device was done in SolidWorks, Adams, and Catia programs. The results were obtained in the MATLAB program. One-sample t-test was used to investigate the accelerations affecting on detection of brain damage (P ˂ 0.05).Results: The obtained linear acceleration was significantly less than the threshold of head injury (P ˂ 0.001). Besides, the obtained rotational acceleration was significantly higher than the thresholds of concussion (P ˂ 0.001), brain surface shearing (P ˂ 0.001), and rupture of bridging vein (P ˂ 0.013).Conclusion: The rotational acceleration is the main cause of head injuries in taekwondo. Regarding the obtained values in this study, it can lead to irreparable brain damage in the absence of headgear while linear acceleration does not play a role in the production of these injuries.
Keywords