فعالیت الکتریکی عضلات اندام تحتانی مردان سالمند سالم هنگام راه رفتن بر روی تردمیل: تأکید بر اثر محیط مجازی

نوع مقاله : مقاله پژوهشی اصیل

نویسندگان

1 استادیار، گروه رفتار حرکتی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

2 دانشجوی کارشناسی ارشد، گروه رفتار حرکتی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

3 دانشجوی کارشناسی ارشد، گروه روان‌شناسی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

4 استادیار طب ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه Agri Ibrahim Chechen، آغری، ترکیه

10.22122/jrrs.v16i0.3567

چکیده

مقدمه: هدف از انجام پژوهش حاضر، بررسی تأثیر محیط مجازی بر فعالیت الکتریکی عضلات اندام تحتانی حین راه رفتن روی تردمیل در افراد سالمند بود.مواد و روش‌ها: 12 نفر از مردان سالمند سالم شهر تبریز به طور داوطلبانه در این مطالعه شرکت نمودند. فعالیت الکتریکی عضلات راست رانی (Rectus femoris)، دوسر رانی (Biceps femoris) و ساقی قدامی (Tibialis anterior) پای راست و چپ هنگام راه رفتن با سرعت ترجیحی با و بدون ارایه واقعیت مجازی، با استفاده از دستگاه الکترومایوگرافی 80 کاناله و فرکانس نمونه‌برداری 1000 هرتز و الکترودهای سطحی ژله‌ای دو قطبی ثبت شد. جهت نرمال‌سازی داده‌ها، از روش حداکثر انقباض ایزومتریک ارادی (Maximum voluntary isometric contraction یا MVIC) استفاده و سیگنال‌های به دست آمده در نرم‌افزار OT BioLab پردازش گردید. داده‌ها با استفاده از آزمون‌های Repeated measures ANOVA و Paired t در نرم‌افزار SPSS و سطح معنی‌داری 05/0 مورد تجزیه و تحلیل قرار گرفت.یافته‌ها: در مردان سالمند، شدت فعالیت عضلات راست رانی پای راست و چپ و ساقی قدامی سمت راست هنگام راه رفتن در محیط مجازی به طور معنی‌داری به ترتیب در حدود 97/1 (005/0 = P)، 91/1 (003/0 = P) و 03/2 (002/0 = P) برابر بیشتر از راه رفتن عادی بود، اما تفاوت معنی‌داری بین شدت فعالیت عضلات دوسر رانی سمت راست (280/0 = P) و چپ (990/0 = P) و ساقی قدامی پای چپ (080/0 = P) هنگام راه رفتن با و بدون واقعیت مجازی مشاهده نگردید. نتایج تحلیل عاملی نیز نشان داد که به طور کلی در سالمندان هنگام راه رفتن در محیط مجازی، عضلات فعالیت بیشتری از راه رفتن عادی داشتند (007/0 = P). همچنین، اثر متقابل معنی‌داری بین عامل محیط مجازی و عضله مشاهده گردید (036/0 = P).نتیجه‌گیری: در سالمندان، محیط مجازی تأثیر معنی‌داری بر افزایش فعالیت الکتریکی عضلات دارد. بنابراین، استفاده از محیط مجازی در طراحی برنامه تمرینی و توان‌بخشی ویژه افراد سالمند توصیه می‌شود.

کلیدواژه‌ها

  1. Azim Zadeh E, Faghihi V, Ghasemi A. The effect of dual-task training on balance of elderly women: with the motor and cognitive approach. Research in Sport Management and Motor Behavior 2018; 8(15): 103-10. [In Persian].
  2. Barak Y, Wagenaar RC, Holt KG. Gait characteristics of elderly people with a history of falls: A dynamic approach. Phys Ther 2006; 86(11): 1501-10.
  3. Lockhart TE, Woldstad JC, Smith JL. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 2003; 46(12): 1136-60.
  4. Voermans NC, Snijders AH, Schoon Y, Bloem BR. Why old people fall (and how to stop them). Pract Neurol 2007; 7(3): 158-71.
  5. Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil 2011; 8: 2.
  6. Priest AW, Salamon KB, Hollman JH. Age-related differences in dual task walking: A cross sectional study. J Neuroeng Rehabil 2008; 5: 29.
  7. Callisaya ML, Blizzard L, Schmidt MD, Martin KL, McGinley JL, Sanders LM, et al. Gait, gait variability and the risk of multiple incident falls in older people: A population-based study. Age Ageing 2011; 40(4): 481-7.
  8. Annetta LA. Video Games in Education: Why they should be used and how they are being used. Theory Pract 2008; 47(3): 229-39.
  9. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2011; (9): CD008349.
  10. Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: A pilot randomized clinical trial and proof of principle. Stroke 2010; 41(7): 1477-84.
  11. Keshner EA. Virtual reality and physical rehabilitation: A new toy or a new research and rehabilitation tool? J Neuroeng Rehabil 2004; 1(1): 8.
  12. Martin O, Julian B, Boissieux L, Gascuel JD, Prablanc C. Evaluating online control of goal-directed arm movement while standing in virtual visual environment. Comput Animat Virtual Worlds 2003; 14(5): 253-60.
  13. Hoffman HG, Garcia-Palacios A, Kapa V, Beecher J, Sharar SR. Immersive virtual reality for reducing experimental ischemic pain. Int J Human Computer Interact 2003; 15(3): 469-86.
  14. Forkan R, Pumper B, Smyth N, Wirkkala H, Ciol MA, Shumway-Cook A. Exercise adherence following physical therapy intervention in older adults with impaired balance. Phys Ther 2006; 86(3): 401-10.
  15. Mirelman A, Patritti BL, Bonato P, Deutsch JE. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 2010; 31(4): 433-7.
  16. Powell WA, Stevens B. The influence of virtual reality systems on walking behaviour: A toolset to support application design. Proceedings of 2013 International Conference on Virtual Rehabilitation (ICVR); 2013 Aug 26-29; Philadelphia, PA, USA. p. 270-6.
  17. Deutsch JE, Myslinski MJ, Kafri M, Ranky R, Sivak M, Mavroidis C, et al. Feasibility of virtual reality augmented cycling for health promotion of people poststroke. J Neurol Phys Ther 2013; 37(3): 118-24.
  18. Bahram ME, Akasheh G, Shabanzadeh Fini M. The effect of 10 weeks of pilates exercises on static and dynamic balance and psychological factors in elderly men. J Fasa Univ Med Sci 2017; 7(3): 416-27. [In Persian].
  19. Farajzadeh MM, Ghanei GR, Sayehmiri K. Health related quality of life in iranian elderly citizens: A systematic review and meta-analysis. Int J Community Based Nurs Midwifery 2017; 5(2): 100-11.
  20. Jeste DV, Blazer DG, First M. Aging-related diagnostic variations: need for diagnostic criteria appropriate for elderly psychiatric patients. Biol Psychiatry 2005; 58(4): 265-71.
  21. Browne JP, O'Boyle CA, McGee HM, Joyce CR, McDonald NJ, O'Malley K, et al. Individual quality of life in the healthy elderly. Qual Life Res 1994; 3(4): 235-44.
  22. Simoes EC, Moraes AC, Okano AH, Altimari LR. Behavior of EMG activation of rectus femoris, vastus lateralis and vastus medialis muscles during maximum contraction before and after a series of repeated efforts. Electromyogr Clin Neurophysiol 2008; 48(8): 377-84.
  23. Contreras B, Vigotsky AD, Schoenfeld BJ, Beardsley C, Cronin J. A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyography amplitude in the parallel, full, and front squat variations in resistance-trained females. J Appl Biomech 2016; 32(1): 16-22.
  24. Merletti R, Rainoldi A, Farina D. Surface electromyography for noninvasive characterization of muscle. Exerc Sport Sci Rev 2001; 29(1): 20-5.
  25. Hollman JH, Childs KB, McNeil ML, Mueller AC, Quilter CM, Youdas JW. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture 2010; 32(1): 23-8.
  26. Ghanavati T, Salavati M, Karimi N, Negahban H, Ebrahimi Takamjani I, Mehravar M, et al. Intra-limb coordination while walking is affected by cognitive load and walking speed. J Biomech 2014; 47(10): 2300-5.
  27. Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007; 26(1): 113-9.
  28. Lin HT, Hsu AT, Chang JH, Chien CS, Chang GL. Comparison of EMG activity between maximal manual muscle testing and cybex maximal isometric testing of the quadriceps femoris. J Formos Med Assoc 2008; 107(2): 175-80.
  29. Tabard-Fougere A, Rose-Dulcina K, Pittet V, Dayer R, Vuillerme N, Armand S. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis. Gait Posture 2018; 60: 6-12.
  30. Park J, Lee D, Lee S. Effect of virtual reality exercise using the nintendo wii fit on muscle activities of the trunk and lower extremities of normal adults. J Phys Ther Sci 2014; 26(2): 271-3.
  31. Sharifmoradi K, Farahpour N. Assessment of range of motion and lower limb muscle activity in Parkinson patients and normal elderly subject (A case study). J Sport Biomech 2017; 3(1): 25-36. [In Persian].
  32. Elhami M, Yazdani S. Electromyographic activity of lower extremity and trunk muscles in patients with cerebral palsy during normal walking and walking with visual, motor and cognitive dual task [MSc Thesis]. Tabriz, Iran: University of Tabriz; 2019. [In Persian].
  33. Azadian E, Taheri H R, Saberi Kakhki A, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance. Salmand Iran J Ageing 2016; 11(1): 100-9. [In Persian].
  34. Walker ML, Ringleb SI, Maihafer GC, Walker R, Crouch JR, Van Lunen B, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: Feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil 2010; 91(1): 115-22.
  35. Dunning K, Levine P, Schmitt L, Israel S, Fulk G. An ankle to computer virtual reality system for improving gait and function in a person 9 months poststroke. Top Stroke Rehabil 2008; 15(6): 602-10.
  36. Quaney BM, He J, Timberlake G, Dodd K, Carr C. Visuomotor training improves stroke-related ipsilesional upper extremity impairments. Neurorehabil Neural Repair 2010; 24(1): 52-61.